Stability of titania nanotube arrays in aqueous environment and the related factors

نویسندگان

  • Can Cao
  • Jun Yan
  • Yumei Zhang
  • Lingzhou Zhao
چکیده

Titania nanotube arrays (NTAs) on titanium (Ti) fabricated by electrochemical anodization have attracted tremendous interest for diverse applications, of which most perform in aqueous environment or related to interaction with water. The NTAs are widely studied however the related factor of stability of NTAs when applied in such environment has rarely been concerned. We report that the annealed anatase NTAs are stable but the non-annealed amorphous NTAs are unstable to undergo specific structural change accompanied with a process of amorphous TiO2 dissolution and anatase TiO2 recrystallization. Quite unexpectedly, the non-annealed NTAs still show good stability without structural change in the cell culture media, possibly due to the presence of inorganics that may interfere with the TiO2 dissolution/redeposition process. The pH value of the aqueous environment is not a determinant factor for the structural change for non-annealed NTAs or not, while the temperature and the existence of F(-) can accelerate the structural change process. F(-) may play a very important role in the change process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rutile phase n- and p-type anodic titania nanotube arrays with square-shaped pore morphologies.

Rutile-phase TiO2 nanotube arrays without broken walls were formed by annealing of anodically formed nanotubes in a propane flame at 650 °C and in air at 750 °C. An unusual morphological transformation was observed from the ellipsoidal pore-shapes of titania nanotubes grown in aqueous electrolyte to a square-shaped pore structure subsequent to the anneals. 750 °C annealed nanotubes were found t...

متن کامل

Interaction of Pyrimidine Nucleobases with Silicon Carbide Nanotube: Effect of Functionalization on Stability and Solvation

This study is about Complexes of Li doped silicon carbide nanotube with Thymine and Cytosine ingas phase and aqueous solutions. Li doped silicon carbide nanotube and its pyrimidine nucleobasecompounds were first modeled by Quantum mechanical calculations in gas phase and in water.Calculated binding energies indicated the stronger ability of thymine to functionalize silicon carbidenanotube than ...

متن کامل

SUSPENSION STABILITY OF TITANIA NANOPARTICLES STUDIED BY UV-VIS SPECTROSCOPY METHOD

Ultraviolet–Visible (UV–Vis) spectroscopy was used, in the current investigation, to explore the dispersion and stability of titania nanoparticles in an aqueous media with different types of dispersants. Hydrochloric and nitric acids as well as ammonia were used to determine the stability of the suspension in the acidic region (pH=2.5) and basic area (pH=9.5), respectively. In addition, for mea...

متن کامل

Fabricated Antibacterial and Bioactive Titania Nanotube Arrays Coating on the Surface of Titanium

By photic-assisted deposition, Ag nanoparticles were assembled on bioactive TiO2 nanotube arrays, which were fabricated by anodic oxidation in 0.5 wt% NH4F solution containing 0.5 wt% Na2HPO4. The samples were characterized by scanning electron mincroscope (SEM), X-ray diffraction (XRD). Germiculture experimentation was employed to testing samples’ antibacterial capability. An obvious antibacte...

متن کامل

A multi-drug delivery system with sequential release using titania nanotube arrays.

A multi-drug delivery system with sequential release based on titania nanotube arrays and polymer micelles as drug carriers is presented. Delivery of multiple water insoluble and soluble drugs required for combined local therapy is demonstrated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016